

GeSIM: World's first on-chain MVNO

A Cryptographically Verifiable and Programmable Telecom Layer

Abstract

GeSIM proposes a novel architecture for Mobile Virtual Network Operator (MVNO) infrastructure, replacing the current trust-based telecom model with cryptographic proofs and automated smart contracts. The system decouples sensitive user data from settlement logic, utilizing **Zero-Knowledge Proofs (ZKPs)** to verify usage and service delivery without exposing raw Call Detail Records (CDRs). **ZK-TLS** is employed to ensure the verifiable authenticity of the provisioning server (SM-DP+), eliminating the risk of identity spoofing and SIM fraud. This framework establishes an **On-Chain Settlement Engine** compatible with emerging GSMA standards (BCE), providing near-instant reconciliation and creating a liquid, programmable market for telecommunication services.

GeSIM: A Cryptographically Verifiable and Programmable Telecom Layer	1
Abstract	2
1. Introduction & Problem Statement	2
1.1 Current Telecom Trust Model	3
1.2 Key Problems	3
1.3 Need for Cryptographic Verifiability	3
2. Design Goals	3
2.1 Verifiable Provisioning	4
2.2 Privacy-Preserving Entitlement	4
2.3 ZK-Based Usage Accounting	4
2.4 On-Chain Settlement	4
2.5 GSMA Compatibility	4
2.6 Security + Privacy by Default	4
3. System Architecture	4
3.1 Actors	4
3.2 System Components	5
3.3 High-Level Architecture Diagram	5
4. Cryptographic Foundations	5
4.1 zkTLS Provenance	5
4.2 EID Possession Proofs	6
4.3 Usage Commitments	6
4.4 Zero-Knowledge Usage Proofs	6
4.5 On-Chain State Commitments	6
5. Technical Architecture/Components	6
6. Security Model	7
6.1 Threat Model	8
6.2 Telecom-Specific Protections	8
6.3 On-Chain Protections	8
6.4 Privacy Model	8
7. Economic & Governance Model	8
7.1 Payment Flows	9
7.2 Refund Structure	9
7.4 Governance Phases	9
8. Implementation Roadmap	9
9. Related Work	10
9.1 Traditional MVNOs	11
9.2 DePIN Projects	11
9.3 ZK in Telecom	11
9.4 Positioning	11
10. Conclusion	11

1. Introduction & Problem Statement

1.1 Current Telecom Trust Model

The contemporary telecom ecosystem operates as a series of opaque, centralized monopolies bound by complex, manual trust agreements. The core MVNO stack—comprising BSS (Billing), OSS (Operations), and Roaming Settlement—is characterized by proprietary databases and vendor-locked systems. Trust is assumed, not proven. This results in high friction and systemic vulnerabilities.

1.2 Key Problems

- **SIM Fraud & Identity Risk:** The reliance on centralized subscriber databases (HSS/HLR) and provisioning servers (SM-DP+) makes them high-value targets. **SIM hijacking and profile cloning** lead to billions in annual losses and severe security risks for users.
- **Opaque Usage Accounting (The "Trust Tax"):** Roaming settlement is slow (30-60 days) and manual, based on exchanging non-auditable data files (TAP/BCE). This high cost of reconciliation is passed directly to the consumer as the "Trust Tax."
- **Unverifiable QoS/SLA:** Service Level Agreement (SLA) reporting relies on the MNO's internal monitoring, creating a conflict of interest and leading to frequent disputes over service quality and conditional payments.
- **Fragmented Cross-Border Access:** Switching networks requires complex legal and technical agreements, hindering the realization of true global, interoperable mobile service.

1.3 Need for Cryptographic Verifiability

The GeSIM protocol replaces trust-based assumptions with **proof-based guarantees**. By anchoring critical identity, usage, and settlement events to an immutable ledger and validating them with Zero-Knowledge Cryptography, we introduce auditable, programmable logic to the telecom industry.

2. Design Goals

2.1 Verifiable Provisioning

To eliminate identity spoofing, the authenticity of the provisioning server (SM-DP+) must be proven cryptographically to the device before any profile is downloaded.

2.2 Privacy-Preserving Entitlement

Entitlements (data plans, service access) must be bound to the device's pseudonymous identifier (EID commitment) on-chain without revealing the raw EID, IMSI, or user PII.

2.3 ZK-Based Usage Accounting

Usage data must be verified for correctness and total sum (**proof of sum correctness**) via ZKPs, allowing settlement without exposing fine-grained, raw CDRs.

2.4 On-Chain Settlement

The entire wholesale reconciliation and settlement process must be automated by smart contracts, executing payment in near-real-time based on verified usage and SLA proofs.

2.5 GSMA Compatibility

The protocol must be built to integrate with current and emerging GSMA standards (e.g., BCE reporting, SM-DP+ APIs) to ensure seamless MNO onboarding.

2.6 Security + Privacy by Default

The architecture must minimize metadata leakage, guarantee data sovereignty for the user (User-Custodial Auth), and maximize cryptographic assurances against fraud and attack.

3. System Architecture

3.1 Actors

- **User/Subscriber:** Holds the cryptographic keys (wallet) controlling the service entitlement.
- **Device (eUICC/LPA):** The physical or embedded SIM containing the key material for authentication.
- **SM-DP+ (Legacy):** The existing provisioning server, now wrapped by the GeSIM ZK-TLS Gateway.
- **MVNO Contract:** The core set of smart contracts governing entitlements, escrow, and settlement logic.
- **Provers:** Off-chain, specialized machines (ZK Coprocessors) that compute and submit validity proofs (usage, SLA) to the contract.
- **MNO Partners:** The upstream network providers receiving settlement payments.
- **Indexers/Oracles:** Provide verifiable data feeds (e.g., DePIN network performance data).

3.2 System Components

- **High-Throughput Settlement Layer:** A smart contract platform optimized for low cost and high transaction finality, hosting the core escrow and reconciliation logic.
- **ZK-Optimized Verification Environment:** A dedicated computation layer (ZK Coprocessor) used solely for generating and verifying complex proofs of large datasets (CDRs).
- **User-Custodial Identity Module:** A cryptographic framework (e.g., TEE-secured HSS/HLR functions) that delegates key ownership to the user's device/wallet.
- **Tokenized Catalog:** A set of smart contracts defining and issuing service entitlements as Semi-Fungible Tokens (e.g., ERC-1155 derivative).

3.3 High-Level Architecture Diagram

The architecture is structured as a **Modular Stack**:

1. **Identity Layer:** User Wallet holds DID/Keys (User-Custodial Auth).
2. **Access Layer:** Device connects to ZK-TLS Gateway for verified provisioning.
3. **Data Layer:** Raw CDRs remain off-chain; Merkle Roots anchor usage.
4. **Verification Layer:** ZK Coprocessors prove usage sums and SLAs.
5. **Settlement Layer:** Smart Contracts execute automated payments to MNOs.

4. Cryptographic Foundations

4.1 zkTLS Provenance

We leverage a variant of **ZK-TLS** (Zero-Knowledge Transport Layer Security) to allow the device to cryptographically verify the identity and certificate chain of the SM-DP+ server **without exposing the session data or the server's private keys**. This proof is required before the profile download sequence begins, eliminating provisioning spoofing.

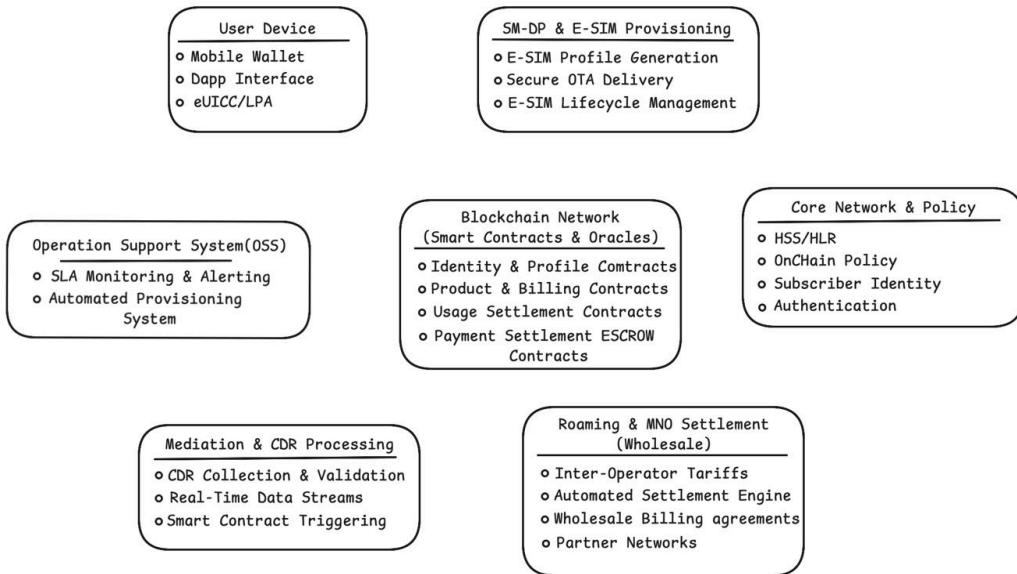
4.2 EID Possession Proofs

The Device proves to the MVNO Contract that it possesses a valid EID (eUICC Identifier) commitment tied to an entitlement **without revealing the raw EID**. This ensures binding without breaching privacy.

4.3 Usage Commitments

Raw Call Detail Records (CDRs) are aggregated into structured data batches. A **Merkle Tree** is constructed over each batch, and only the resulting **Merkle Root** (the Usage Commitment) is anchored on-chain. This provides an audit trail without storing private logs.

4.4 Zero-Knowledge Usage Proofs


Specialized **ZK Coprocessors** execute integrity-proofed queries against the off-chain Usage Commitments. The system generates a ZKP that validates the final settlement amount, specifically confirming: $\$Proof(\sum_{CDRs} (Usage) = InvoiceAmount)$. This proves the mathematical correctness of the billable sum.

4.5 On-Chain State Commitments

Product plans and entitlements are represented as **ERC-1155 derivative tokens**. The token's metadata contains the cryptographic commitment to the plan's constraints (e.g., max quota, expiry), ensuring auditable pricing and usage rules.

5. Technical Architecture/Components

6. Security Model

6.1 Threat Model

The primary threats addressed are:

- **SM-DP+ Spoofing:** A rogue server impersonating the provisioning entity.
- **EID Misbinding:** Linking a service entitlement to a device the user does not control.
- **Fraudulent Usage Reporting:** An MNO claiming excessive usage for fraudulent billing.
- **Replay Attacks:** Submitting the same ZK proof or provisioning request multiple times.

6.2 Telecom-Specific Protections

- **zkTLS:** Defends against SM-DP+ spoofing by cryptographically verifying the server's identity.
- **EID Proofs:** Prevents misbinding by enforcing proof-of-possession tied to the wallet.
- **TEE Security:** Authentication keys (Ki) are secured within Trusted Execution Environments (or user devices), preventing the single HSS honeypot risk.
- **ZK Non-Reply Circuits:** Proofs are constructed to include unique transaction nonces and timestamps, making them impossible to replay.

6.3 On-Chain Protections

- **Escrow Logic:** Funds are locked and released only upon the fulfillment of verified cryptographic proofs (SLA/Usage).
- **Verifier Checks:** The smart contract includes robust checks against the ZK proof validity, preventing fraudulent settlement.

6.4 Privacy Model

The system is built for pseudonymity: User PII is held off-chain (if at all). On-chain data consists only of cryptographic commitments (Merkle roots), proofs of computation, and pseudonymized wallet addresses. Raw CDRs are never broadcast.

7. Economic & Governance Model

7.1 Payment Flows

The system creates a transparent, three-party payment flow:

1. **User Payment:** User pays for the Plan in stablecoins.
2. **Escrow:** Funds are held by the Settlement Contract.
3. **MNO Payout:** Funds are released automatically to the MNO upon ZK-verified usage.
4. **MVNO Margin:** The predefined margin is extracted by the MVNO Contract before payout.

7.2 Refund Structure

ESCROW Contracts will be used to manage unhandled exceptions, where if there are any discrepancies in plan purchase/activation, the refund will be made directly via the Smart Contracts itself.

7.3 Incentive Layers

The protocol includes optional incentive layers to align network participation:

- **Prover Rewards:** Fees paid to ZK Coprocessor operators for computing high-volume proofs.
- **Indexer Rewards:** Payments to services that index the immutable ledger for easy querying.
- **DePIN Oracles:** Payments to users/devices for submitting verified, real-time network performance data (SLA proofs).

7.4 Governance Phases

The protocol adopts a progressive decentralization model:

- **Phase 1 (Centralized):** Initial development and contract deployment are centrally controlled (Multi-sig).
- **Phase 2 (DAO Oversight):** Key parameters (fee structure, MNO onboarding) are moved to a decentralized autonomous organization (DAO) controlled by token holders.
- **Phase 3 (Full Decentralization):** The protocol is self-sustaining, with the community managing all upgrades and economic parameters.

8. Implementation Roadmap

Phase	Focus Area	Key Deliverable
Phase 1	Smart Contract Layer	Escrow and basic entitlement issuance (ERC-1155). Initial Ricardian Contract framework.
Phase 2	Cryptographic POC	Functional prototype of ZK-TLS verifiable provisioning and EID possession proofs.
Phase 3	MNO Integration & ZK Metering	Implementation of the ZK Coprocessor for high-volume BCE usage aggregation. First MNO pilot integration.
Phase 4	Security Hardening	Comprehensive security audits of all smart contracts and ZK circuits. Optimization of proving costs.
Phase 5	Multi-MNO Ecosystem Launch	Open APIs for onboarding additional MNOs. Implementation of multi-MNO roaming/clearinghouse logic.

9. Related Work

9.1 Traditional MVNOs

GeSIM aims to replace the legacy clearinghouse model, which relies on proprietary vendor-locked solutions, with a transparent, open-source settlement layer.

9.2 DePIN Projects

GeSIM integrates DePIN principles by incentivizing users to become verifiable data oracles, securing the integrity of the network performance data used for SLA monitoring.

9.3 ZK in Telecom

Prior research focused on generic anonymous authentication. GeSIM moves beyond this to deploy ZKPs for the highly valuable, transactional layer: **verifiable provisioning and settlement**.

9.4 Positioning

GeSIM stands at the intersection of GSMA compatibility, cryptographic verification, and programmable finance. It is the first architecture designed to achieve **automated, trustless wholesale roaming settlement** while simultaneously establishing **User-Custodial Auth** as the default security model.

10. Conclusion

The GeSIM protocol offers a necessary and irreversible upgrade to global mobile telecommunications. By leveraging Zero-Knowledge Proofs, User-Custodial Identity, and programmable smart contracts, we eliminate the systemic vulnerabilities of centralized infrastructure and remove the billions of dollars lost annually to fraud and manual settlement costs. GeSIM creates a verifiable, privacy-preserving, and liquid telecom layer, paving the way for truly programmable, decentralized connectivity.

Appendix

(Note: These appendices would be graphical representations and detailed technical specifications in the final white paper.)

- **A. Architecture Diagram:** Visual overview of the five layers (Identity, Access, Data, Verification, Settlement).
- **B. Provisioning Sequence Diagram:** Detailed flow from Device request to ZK-TLS verification and profile download.
- **C. Settlement Sequence Diagram:** Detailed flow from MNO usage reporting to ZK Proof submission and automated stablecoin payout.
- **D. Cryptographic Notation:** Formal specification of the ZK circuits used for usage and identity proofs.