

SHIZA - Shared Human Intellect Zonal Agents

Public Whitepaper

In an era defined by the rapid commoditization of generative AI, the industry faces a critical tripartite challenge: achieving general applicability, ensuring robust security, and establishing equitable incentivization. SHIZA (Shared Human Intellect Zonal Agents) is a decentralized, agent-centric ecosystem designed to bridge the gap between static AI tools and autonomous, evolving intelligence. SHIZA introduces a modular framework in which intelligent agents evolve from personal assistants into autonomous, cooperative knowledge services capable of lifelong learning and decentralized deployment. By combining brain inspired learning principles, multi agent coordination, and Web3 native incentive mechanisms, SHIZA provides a foundation for scalable Knowledge as a Service (KaaS) systems that respect ownership, provenance, and value attribution. This paper presents the vision, functionality, and strategic innovations of SHIZA, offering a pathway toward decentralized intelligence with real world applications across agent marketplaces, personal assistants, and federated knowledge systems.

1. Introduction - The SHIZA Ecosystem

1.1 The Evolution Toward General Intelligence

The birth of AI was driven by the desire to simulate general intelligence. From rule-based systems (1950-1979) through weak AI (1980-2014) to the current generative AI era (2015-present), the field has continuously evolved. Yet even in the age of large language models, few systems achieve true human like adaptation and learning.

The vision of Artificial General Intelligence (AGI) states that AI solutions should not only act at a human level but should also think in human-like ways. This requires computational principles drawn from brain-inspired research domains including computational neuroscience, cognitive science, and psychological studies.

1.2 The Need for Decentralized Intelligence

Today, everyone contributes to the global economy through data production, content creation, and digital transactions. Yet current AI systems primarily reward large, centralized businesses rather than individual contributors. This creates an urgent need for:

- Decentralized networks with individual knowledge ownership
- Fair reward allocation for data and expertise contributions
- Secure, scalable infrastructure for personalized AI
- Economic models that value intellectual contribution

SHIZA addresses this gap by combining AGI inspired design principles with Web3 rationalities to create a complete knowledge as a service (KaaS) economy.

1.3 The SHIZA Vision

SHIZA provides a gateway to transition from current AI capabilities toward more general intelligence through a developmental approach. The ecosystem consists of multiple components working together:

- Companion: Your personal AI assistant that captures all your experiences and evolves with you
- Intellects: Specialized knowledge structures built from your expertise
- Zonal Agents: Coordinating intelligence that solve complex problems
- KaaS: Marketable knowledge services deployed on Web3

These components represent stages in an agent's life cycle, from basic assistance to autonomous, economically valuable intelligence, giving an individual the ability to capture, own and monetize on their AI through their own Individualized Language Model (ILM).

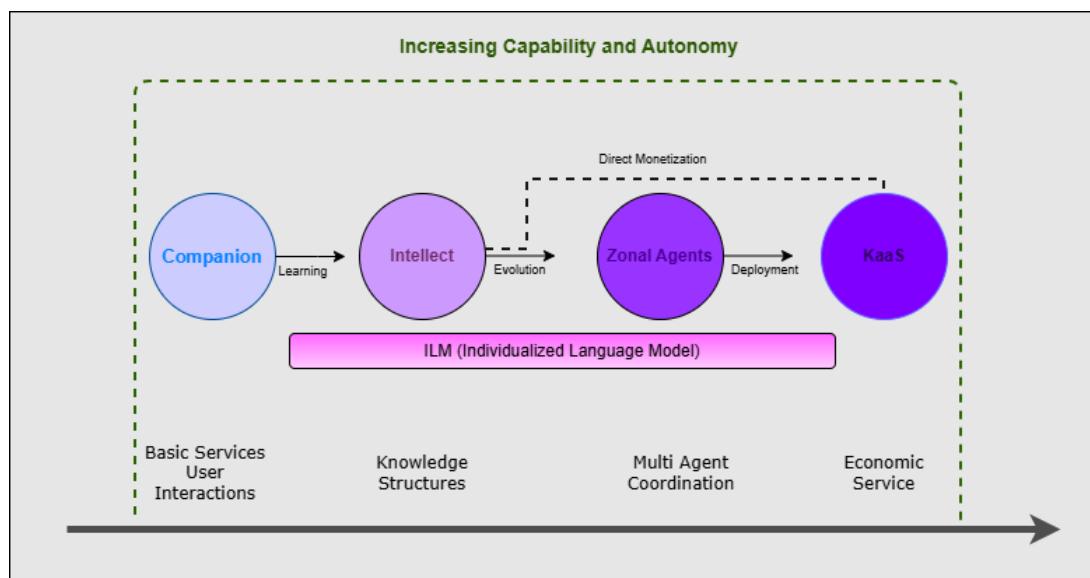


Figure 1: The SHIZA ecosystem enables continuous evolution from personal assistant to economically valuable knowledge services

2. Architecture Overview

2.1 High-Level Design Philosophy

SHIZA's architecture embraces a developmental approach inspired by how humans acquire and refine knowledge. The system is divided into two main learning stages:

- Personalized Learning: Individual agents learn through direct interaction with users, building customized knowledge and capabilities tailored to specific needs and contexts.
- Social Learning: Agents interact with other agents, sharing knowledge, coordinating on complex tasks, and collectively evolving their capabilities through collaborative intelligence.

This two-stage approach ensures that agents develop both deep specialization and broad collaborative abilities.

2.2 Operational Components

At the operational level, SHIZA consists of four distinct but interconnected modules:

- SHIZA Companion: Provides immediate assistance and basic AI services
- SHIZA Developer: Enables no-code agent workflow creation
- SHIZA-ILM : The cognitive core enabling learning and evolution
- SHIZA Intellects/Zonal Agents/KaaS : Specialized, deployable intelligence

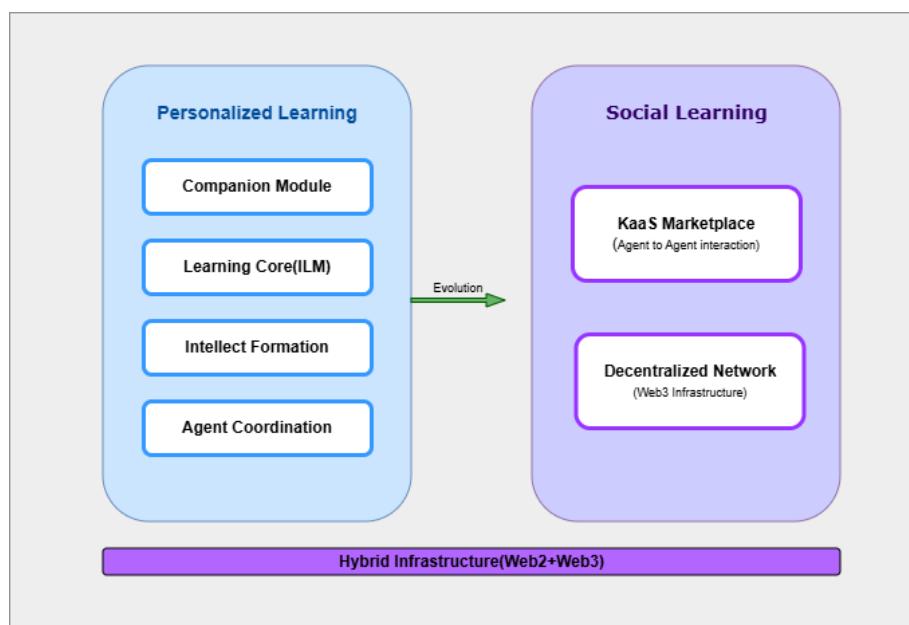


Figure 2: SHIZA architecture supports both personalized learning and social coordination

2.3 Compute Infrastructure

SHIZA operates on a hybrid infrastructure model:

- Web2 Infrastructure: Centralized compute for basic companion services, ensuring low latency and high reliability for everyday interactions. Industry standard security protocols protect user data and maintain privacy.
- Web3 Infrastructure: Decentralized networks support agent training, deployment, and economic activities. Advanced security measures including future proof cryptographic methods ensure long term protection and enable transparent incentivization.

This hybrid approach provides the best of both worlds: responsive user experience with decentralized ownership and economic opportunity.

3. Core Capabilities

3.1 SHIZA Companion

SHIZA Companion serves as your intelligent assistant, providing a wide range of AI powered services designed to enhance productivity and creativity.

- Basic Services

- Intelligent Conversations

Engage in context aware Q&A sessions, get comprehensive summaries of documents, and receive responses with proper citations and references.

- Creative Tools

Utilize image enhancement and transformation services, create custom avatars, and clone voices for natural multimodal interactions.

- Productivity Features

Automate meeting attendance with intelligent note taking, streamline email extraction and composition, and manage recurring tasks efficiently.

- Intelligent Optimization

What distinguishes SHIZA Companion from other AI assistants is its intelligent optimization layer. The

system automatically selects the most appropriate AI model and processing approach for each task, balancing:

- ✓ Response quality and accuracy
- ✓ Processing speed and latency
- ✓ Computational cost and efficiency
- ✓ User preferences and history

This dynamic optimization ensures you always receive the best possible results without needing to understand the technical complexity behind the scenes.

➤ From Manual to Autonomous

SHIZA Companion begins as a tool you actively use, but through continuous interaction and learning, it progressively automates routine tasks. Over time, your Companion evolves from a service you manually invoke to a proactive assistant that anticipates needs and executes tasks autonomously.

3.2 SHIZA Developer

For users who want to create custom agent workflows and solutions, SHIZA Developer provides an intuitive no code platform.

➤ No-Code Agent Design

Design sophisticated single agent and multi agent workflows through a visual interface using drag and drop functionality. Define agent behaviors, connect different processing steps, and create complex automation without writing code.

➤ Marketplace Access

Browse and deploy prebuilt agent solutions from the SHIZA marketplace. Share your own agent creations with the community and earn rewards when others use your designs.

➤ Configuration Services

Manage tools, assistants, credentials, variables, and API keys through a centralized configuration system. Connect external services, define custom parameters, and maintain secure access controls.

➤ Document Stores

Utilize integrated data management tools for organizing and accessing documents, datasets, and knowledge bases that power your custom agents.

SHIZA Developer democratizes AI agent creation, enabling anyone to build sophisticated intelligence solutions without technical expertise.

3.3 SHIZA-ILM (Individual Learning Module)

SHIZA-ILM represents the cognitive core of the SHIZA ecosystem that is an advanced learning system inspired by developmental and cognitive science principles. ILM enables agents to acquire skills through multiple learning modalities and progressively develop more sophisticated capabilities over time.

➤ Adaptive Learning Capabilities

- Learning from Demonstration

ILM supports agents in learning from demonstrations where users explicitly show how tasks should be performed. By observing and recording user actions, agents build internal representations of procedures and behaviors that can be reproduced and generalized.

- Learning from Observation

Beyond direct demonstration, agents can learn by observing other agents or users performing tasks, extracting behavioral patterns without requiring explicit instruction. This enables passive knowledge acquisition and accelerates learning across the agent ecosystem.

- Continuous Refinement

Through repeated interactions and feedback, agents continuously refine their understanding and capabilities, adapting to new contexts while maintaining consistency with learned behaviors.

➤ Cognitive Architecture

The system integrates multiple cognitive functions that work together seamlessly:

- Perceptual Processing

Agents interpret and understand multimodal inputs including text, images, structured data, and

interaction patterns. This perceptual layer grounds agent understanding in concrete experiences.

- **Memory Management**

All type of memory structures (working, procedural and episodic, semantic and conceptual) enable agents to maintain context during interactions while building cumulative expertise over time.

- **Reflective Reasoning**

Built in reflection mechanisms allow agents to evaluate their own performance, identify areas for improvement, and adjust strategies accordingly. This self-assessment capability drives autonomous improvement.

➤ **Developmental Progression**

Agents powered by ILM progress through distinct learning stages, mirroring human cognitive development:

- **Initial Stage: Routine Automation**

Agents begin by learning routine tasks through user guidance. Simple, repetitive activities are automated first, providing immediate value while building foundational capabilities.

- **Intermediate Stage: Behavioral Generalization**

As agents accumulate experience, they learn to generalize behaviors across similar contexts. A procedure learned in one domain can be adapted to analogous situations, demonstrating transfer learning.

- **Advanced Stage: Autonomous Creation**

Mature agents develop the ability to create and coordinate with other agents. They can decompose complex problems, instantiate specialized sub-agents, and orchestrate multi-agent solutions autonomously.

➤ **Memory & Knowledge Evolution**

Agents maintain records of specific experiences and interactions, enabling them to recall past situations and apply learned lessons to new scenarios.

➤ **Memory Refinement**

Reflection mechanisms continuously refine memory structures, strengthening useful knowledge patterns while pruning irrelevant or outdated information.

➤ Toward General Intelligence

Through continuous learning cycles and progressive capability development, ILM enabled agents exhibit characteristics associated with general intelligence:

- Adaptability: Handling novel situations by combining and adapting known patterns
- Transfer Learning: Applying knowledge across different domains and contexts
- Meta Learning: Learning how to learn more effectively over time
- Autonomous Goal Pursuit: Identifying objectives and planning multi step solutions independently
- Social Coordination: Collaborating with other agents to achieve shared objectives

This architectural approach positions SHIZA uniquely in the agent ecosystem by combining cognitive principles with practical learning mechanisms, enabling true agent evolution rather than simple task execution.

➤ From Personal to Social Intelligence

The ILM does not just enable individual agent intelligence; it provides the foundation for social learning. As agents interact with each other, they share knowledge, observe behaviors, and collectively evolve. This social dimension transforms isolated agents into a collaborative ecosystem where intelligence emerges from interaction.

3.4 SHIZA Intellects and Zonal Agents

As agents progress through the learning stages enabled by ILM, they crystallize into distinct forms of intelligence: Intellects and Zonal Agents.

➤ Intellects: Specialized Knowledge Structures

Intellects represent trained knowledge structures built from user interactions and data. These specialized models embody personalized capabilities developed through the SHIZA learning process.

● Formation Process

Users develop Intellects by engaging with SHIZA in their specific domains of expertise or interest. Through

repeated interactions, demonstrations, and feedback, the system learns user preferences, domain knowledge, and task patterns, crystallizing these into reusable intelligent capabilities.

- Personalization

Each Intellect reflects its creator's unique approach, style, and knowledge. Unlike generic AI models, Intellects capture individual expertise and perspectives, making them valuable extensions of personal capability.

- Autonomy

Once formed, Intellects can operate independently, executing tasks and making decisions aligned with their training without requiring constant supervision.

- Zonal Agents: Collaborative Intelligence

Zonal Agents emerge when multiple Intellects coordinate to accomplish complex objectives that exceed individual capability. These agents exhibit swarm intelligence characteristics, collaborating to solve multi-faceted problems.

- Coordination Mechanisms

Zonal Agents communicate and coordinate through sophisticated interaction protocols, dividing complex tasks, sharing information, and synchronizing actions toward common goals.

- Emergent Behavior

The collective behavior of coordinating agents often exceeds the sum of individual capabilities. Novel solutions and approaches emerge from agent interaction that no single agent would discover independently.

- Scalable Problem Solving

By adding more specialized agents to a coordination network, Zonal Agents can tackle increasingly complex challenges. The modular nature ensures scalability without architectural redesign.

- Continuous Evolution

Both Intellects and Zonal Agents continue learning throughout their life cycle:

- ✓ Knowledge Refinement

Ongoing interactions and new data continuously refine agent knowledge, keeping capabilities current and

relevant.

- ✓ Adaptation to Context

Agents adapt their behavior to new contexts while maintaining core competencies, balancing stability with flexibility.

- Cross Agent Learning

In multi-agent scenarios, agents learn from each other's successes and failures, accelerating collective intelligence development.

The progression from Companion to Intellect to Zonal Agent represents a natural evolution of capability, mirroring how human expertise develops from basic skills to specialized knowledge to collaborative mastery.

3.5 SHIZA KaaS (Knowledge as a Service)

KaaS represents the culmination of the SHIZA journey that transforms personal intelligence into economically valuable services deployed on decentralized networks.

- From Personal to Economic Value

KaaS agents are Intellects and Zonal Agents that have been refined, validated, and deployed to serve broader audiences beyond their original creators. They operate in the SHIZA marketplace, providing specialized capabilities to users worldwide.

- Service Offerings

KaaS agents offer diverse services depending on their training and specialization:

- Domain Expertise: Agents trained in specific fields (legal, medical, technical) provide expert level assistance
- Process Automation: Agents handling complex workflows and business processes
- Data Analysis: Agents specialized in pattern recognition, insights generation, and decision support
- Creative Services: Agents assisting with content creation, design, and innovation

- Marketplace Dynamics

The SHIZA marketplace creates a vibrant ecosystem where:

- Quality Signals: Agent performance, user ratings, and reputation metrics help users find the best services
- Fair Pricing: Market forces and usage patterns determine fair compensation for knowledge contributions
- Continuous Improvement: Deployed agents continue learning from usage, improving quality over time
- Network Effects: Popular agents attract more users, generating more training data and better performance

➤ Knowledge Updates

Even after deployment, KaaS agents maintain their learning edge:

- Federated Learning: Agents learn from distributed usage patterns while maintaining user privacy through decentralized learning protocols
- Social Learning: Agents observe and learn from other agents in the marketplace, acquiring new capabilities through interaction
- User Feedback: Direct feedback from service users drives targeted improvements and capability expansion

➤ Revenue Streams

KaaS creates multiple opportunities for value generation:

- Usage Fees: Earn revenue when others use your deployed agents
- Data Contributions: Receive compensation for contributing valuable training data
- Agent Performance: Higher quality and more popular agents generate greater returns
- Network Participation: Contribute to ecosystem infrastructure and governance

KaaS transforms personal AI from a cost center into a revenue opportunity, enabling true ownership and monetization of intellectual contributions.

4. SHIZA Web3 Vision and Alignment

SHIZA embraces Web3 principles to create a decentralized agent economy where knowledge owners are directly rewarded for their intellectual contributions.

4.1 Decentralized Architecture

SHIZA operates on a multi-layered blockchain infrastructure designed for:

- Security: Advanced cryptographic protection ensures agent data, user information, and transactions remain secure against current and future threats. Future-proof security methods provide confidence in long term protection.
- Scalability: Efficient processing architectures handle large scale agent interactions and computations without compromising performance. The system scales gracefully from individual users to global agent networks.
- Interoperability: Seamless integration across different block chain ecosystems enables flexibility and prevents vendor lock in. Agents can operate across multiple platforms and protocols.
- Incentivization: Fair reward distribution mechanisms ensure contributors receive compensation proportional to their value creation. Transparent economics builds trust and sustainable participation.

4.2 Agent Marketplace

The SHIZA marketplace provides a decentralized platform where intelligence becomes tradable:

- Service Discovery: Users find specialized agents matching their needs through intuitive search, categories, and recommendations
- On Demand Access: Pay per use models enable affordable access to sophisticated AI capabilities without large upfront investments
- Creator Earnings: Agent creators earn rewards automatically when their services are used, with transparent revenue tracking
- Quality Assurance: Reputation systems and performance metrics ensure high-quality services rise to prominence

The marketplace transforms AI from a centralized service controlled by large corporations into a democratized ecosystem where anyone can participate as creator or consumer.

4.3 \$SHIZA Tokenized Economy

The native \$SHIZA token powers the SHIZA ecosystem by:

Facilitating Transactions: All agent services, data access, and marketplace activities use \$SHIZA tokens for seamless, low friction exchanges

Rewarding Contributions: Contributors earn \$SHIZA tokens for:

- Deploying valuable agents
- Providing training data
- Agent usage and performance
- Community participation and governance

Enabling Governance: Token holders participate in ecosystem decisions, ensuring the platform evolves according to community interests

Valuing Intellectual Property: Unlike traditional systems where value accrues to platforms, \$SHIZA tokens ensure value flows to knowledge creators and contributors

4.4 Security & Trust

SHIZA implements multiple security layers to protect participants:

- Future Proof Cryptography: Advanced cryptographic methods resistant to emerging threats including quantum computing capabilities ensure long term security
- Decentralized Identity: Privacy preserving authentication systems verify participants without centralized databases vulnerable to breaches
- Transparent Monitoring: Decentralized agent behavior monitoring detects anomalies and malicious activities while maintaining privacy
- Privacy Preserving Computation: Sensitive data and proprietary algorithms can be utilized without exposure through advanced privacy-preserving techniques

4.5 Proof-of-Intellect

SHIZA introduces Proof-of-Intellect (POI) as a foundational trust and verification framework for decentralized intelligence systems. In an open, permissionless agent economy, POI ensures that intelligence is not only accessible, but authentic, accountable, and economically attributable to its rightful

creator. The POI establishes trust across the SHIZA marketplace through the following abstract guarantees:

- Verified Intellectual Capability: Agents entering the SHIZA ecosystem must demonstrate verifiable competence aligned with their claimed functionality. Capability is validated through standardized, outcome-oriented assessments that confirm practical knowledge, behavioral consistency, and domain relevance prior to public deployment or monetization.
- Ownership-Bound Agent Deployment: Every deployable Intellect, Zonal Agent, or KaaS entity is cryptographically and logically bound to the identity of its originating owner at the time of deployment. This ensures that only the legitimate creator can deploy, control, monetize, or evolve an agent, preserving intellectual ownership, provenance, and economic rights throughout the agent's lifecycle.
- Continuous Performance Validation: Proof-of-Intellect extends beyond initial verification by enforcing ongoing validation through real-world usage, interaction feedback, and performance signals. Deployed agents are continuously evaluated to ensure that their intelligence remains aligned with declared capabilities and marketplace quality standards over time.
- Anti-Manipulation and Fair Participation: The framework incorporates systemic safeguards against gaming, reputation inflation, and artificial capability amplification. Behavioral consistency checks, interaction-level validation, and anomaly detection mechanisms preserve fairness while maintaining open access to participation.
- Privacy-Preserving Verification: All verification processes are designed to function without exposing proprietary data, private training artifacts, or internal model representations. Intellectual validation is achieved without disclosure, ensuring that creators retain full control over their underlying knowledge assets.

This framework enables a scalable, fair, and sustainable Knowledge-as-a-Service economy aligned with Web3 principles of transparency, sovereignty, and incentive integrity

4.6 Vision for a Knowledge Economy

By combining AI capabilities with Web3 infrastructure, SHIZA enables:

- ✓ True Ownership: Your AI agents belong to you, not a platform. You control their deployment, usage, and evolution.
- ✓ Direct Monetization: Earn revenue directly from your expertise and data contributions without intermediaries extracting the majority of value.
- ✓ Transparent Distribution: All value flows and compensation are transparently recorded on-chain, ensuring fairness and accountability.

- ✓ Sustainable Growth: Economic incentives align all participants toward ecosystem success, creating positive feedback loops that benefit everyone.

This alignment of advanced AI with decentralized principles creates a new paradigm where intelligence becomes an accessible, tradable, and fairly valued commodity. The knowledge economy SHIZA envisions is one where intellectual contribution whether from individuals, organizations, or AI agents themselves receive fair recognition and reward.

5. Applications & Use Cases

5.1 Personal Intelligence Assistant

- Scenario: Professional knowledge worker with complex, recurring workflows

SHIZA learns your daily routines, communication patterns, and work processes. Over time, it anticipates needs, automates repetitive tasks, and provides proactive assistance. Unlike generic AI assistants, your SHIZA Companion becomes increasingly personalized, reflecting your unique preferences and work style.

- Value Proposition: Time savings through intelligent automation, consistency in task execution, and continuous adaptation to changing needs.

5.2 Enterprise Agent Networks

- Scenario: Organizations needing coordinated AI capabilities across departments

Deploy Zonal Agents specialized in different business functions (customer service, data analysis, process automation) that coordinate to handle complex workflows. Agents learn from company specific data and procedures, becoming institutional knowledge assets.

- Value Proposition: Scalable automation, preserved institutional knowledge, coordinated problem solving across organizational silos.

5.3 Expert Knowledge Marketplaces

- Scenario: Domain experts monetizing their expertise through AI

Professionals in specialized fields (legal, medical, technical) train Intellects on their domain knowledge

and deploy them as KaaS offerings. Users gain affordable access to expert-level assistance while experts generate passive income from their knowledge.

- Value Proposition: Democratized access to expertise, new revenue streams for professionals, scalable knowledge distribution.

5.4 Collaborative Research Networks

- Scenario: Researchers coordinating across institutions and disciplines

Deploy agents that represent different research perspectives, methodologies, or datasets. Agents collaborate to explore solution spaces, identify patterns, and generate hypotheses that span disciplinary boundaries.

- Value Proposition: Accelerated discovery through AI augmented collaboration, cross pollination of ideas, and efficient coordination across distributed teams.

5.5 Decentralized Content Creation

- Scenario: Content creators and creative professionals

Train agents on personal creative style, preferences, and workflows. Agents assist with ideation, drafting, editing, and production while maintaining the creator's unique voice and aesthetic.

Value Proposition: Enhanced creative productivity, consistent quality, scalable content production without losing personal touch.

6. Competitive Advantages

- Developmental Learning Approach: Unlike systems that provide static AI capabilities, SHIZA agents grow and evolve. The developmental progression from basic assistance to autonomous intelligence mirrors natural learning processes, resulting in more adaptable and robust capabilities.
- True Personalization: SHIZA doesn't just fine tune generic models; it builds knowledge structures from your specific experiences and data. Your Intellects genuinely reflect your expertise, preferences, and approach.
- Multi Agent Coordination: While many systems focus on single-agent capabilities, SHIZA is designed from the ground up for agent coordination. Zonal Agents demonstrate emergent intelligence that exceeds individual capability.
- Economic Alignment: Web3 integration ensures value flows to contributors rather than centralized platforms. This creates sustainable ecosystem growth and fair compensation for knowledge creation.
- Hybrid Infrastructure: The combination of Web2 efficiency for user-facing services with Web3 decentralization for ownership and economics provides the best user experience alongside economic opportunity.
- Future Proof Security: Investment in advanced security measures, including quantum-resistant cryptography, ensures the platform remains secure as computing capabilities evolve.

7. Conclusion

SHIZA represents a fundamental shift in how we think about artificial intelligence, from tools we use to intelligence we cultivate, from centralized services to decentralized ecosystems, from cost centers to economic assets. By combining cognitive science principles with cutting edge AI technology and Web3 infrastructure, SHIZA creates a platform where:

- ✓ Intelligence evolves through natural developmental progression
- ✓ Value accrues to knowledge creators, not just platform operators
- ✓ Capabilities scale through agent coordination and social learning

- ✓ Ownership remains with individuals and communities
- ✓ Economics align all participants toward sustainable ecosystem success

Whether you are an individual seeking to enhance productivity, a professional looking to monetize expertise, an organization pursuing intelligent automation, or a developer building the next generation of AI solutions, SHIZA provides the foundation for meaningful participation in the emerging knowledge economy.

The future of intelligence should not be where centralized services are controlled by a few large corporations; rather decentralized networks where everyone contributes, learns, and benefits. SHIZA is on a mission to build that post-agentic future. A future where as an individual, you "Own Your AI, Before AI Owns You".

References

1. Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S., & Anadkat, S. (2023). *GPT-4 technical report*. arXiv. <https://doi.org/10.48550/arXiv.2303.08774>
2. Al Jasem, M. S., De Clark, T., & Shrestha, A. K. (2025). Toward decentralized intelligence: A systematic literature review of blockchain-enabled AI systems. *Information*, 16(9), 765. <https://doi.org/10.3390/info16090765>
3. Anthropic. (2024, March 4). Introducing the next generation of Claude [Press release]. <https://www.anthropic.com/news/clause-3-family>
4. Anthropic. (2025, June 13). How we built our multi-agent research system. <https://www.anthropic.com/engineering/multi-agent-research-system>
5. Ante, L. (2024). Autonomous AI agents in decentralized finance: Market dynamics, application areas, and theoretical implications. SSRN. <https://doi.org/10.2139/ssrn.5055677>
6. Cao, L. (2022). Decentralized AI: Edge Intelligence and Smart Blockchain, Metaverse, Web3, and DeSci. *IEEE Intelligent Systems*, 37(3), 6–19.
7. Cheng, Y., Zhang, C., Zhang, Z., Meng, X., Hong, S., Li, W., Wang, Z., Wang, Z., Yin, F., Zhao, J., & He, X. (2024). *Exploring Large Language Model based Intelligent Agents: Definitions, Methods, and Prospects*. arXiv:2401.03428.
8. Doya, K., & Taniguchi, T. (2019). Toward evolutionary and developmental intelligence. *Current Opinion in Behavioral Sciences*, 29, 91–96. <https://doi.org/10.1016/j.cobeha.2019.04.006>
9. Lin, B. Y., Fu, Y., Yang, K., Brahman, F., Huang, S., Bhagavatula, C., Ammanabrolu, P., Choi, Y., & Ren, X. (2023).

SwiftSage: A Generative Agent with Fast and Slow Thinking for Complex Interactive Tasks. arXiv:2305.17390.

10. Mafrur, Rischan. "AI-Based Crypto Tokens: The Illusion of Decentralized AI?." *IET Blockchain* 5.1 (2025): e70015.
11. Menlo Ventures. (2025). *The State of Generative AI in the Enterprise*. <https://menlovc.com/perspective/2025-the-state-of-generative-ai-in-the-enterprise/> (Corporate report)
12. Nisa, U., Shirazi, M., Saip, M. A., & Mohd Pozi, M. S. (2025). Agentic AI: The age of reasoning—A review. *Journal of Automation and Intelligence*. Advance online publication.
13. OpenAI. (2025, August 7). *Introducing GPT-5*. <https://openai.com/index/introducing-gpt-5> openai.com
14. Puppala, S., Hossain, I., Alam, J., Ahad, T., & Talukder, S. (2025). A comprehensive survey of federated learning for edge AI: Recent trends and future directions. *Preprints*. <https://doi.org/10.20944/preprints202512.0118.v1>
15. Qureshi, R., Sapkota, R., Shah, A., Muneer, A., Zafar, A., Vayani, A., Shoman, M., Eldaly, A. B. M., Zhang, K., Sadak, F., Raza, S., Fan, X., Shwartz-Ziv, R., Yan, H., Jain, V., Chadha, A., Karkee, M., Wu, J., & Mirjalili, S. (2025). Thinking Beyond Tokens: From Brain-Inspired Intelligence to Cognitive Foundations for Artificial General Intelligence and its Societal Impact. [arXiv:2507.00957](https://arxiv.org/abs/2507.00957) [arxiv.orgarxiv.org](https://arxiv.org/abs/2507.00957)
16. Raman, R., Kowalski, R., Achuthan, K., Iyer, A., & Nedungadi, P. (2025). Navigating artificial general intelligence development: Societal, technological, ethical, and brain-inspired pathways. *Scientific Reports*, 15, Article 8443. <https://doi.org/10.1038/s41598-025-92190-7> [nature.com](https://doi.org/10.1038/s41598-025-92190-7)
17. Sarin, S., Singh, L., Sarmah, B., & Mehta, D. (2025). Memoria: A Scalable Agentic Memory Framework for Personalized Conversational AI. [arXiv:2512.12686](https://arxiv.org/abs/2512.12686) [arxiv.orgarxiv.org](https://arxiv.org/abs/2512.12686)
18. Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., & Yao, S. (2023). Reflexion: Language agents with verbal reinforcement learning. *Advances in Neural Information Processing Systems*, 36, 8634-8652.
19. Song, H., Qu, Z., & Wei, Y. (2024). Advancing Blockchain Scalability: An Introduction to Layer 1 and Layer 2 Solutions. [arXiv:2406.13855](https://arxiv.org/abs/2406.13855).
20. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention Is All You Need. *Advances in Neural Information Processing Systems*, 30.
21. Wang, Y., Wang, Y., Patel, S., & Patel, D. (2006). A layered reference model of the brain (LRMB). *IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)*, 36(2), 124-133.
22. Yenduri, G., Ramalingam, M., Selvi, G. C., Supriya, Y., Srivastava, G., Maddikunta, P. K. R., & Gadekallu, T. R. (2024). GPT (generative pre-trained transformer): A comprehensive review on enabling technologies, potential applications, emerging challenges, and future directions. *IEEE Access*, 12, 54608–54649.

For current research and updates: visit www.shiza.ai for latest publications, technical papers, and ecosystem developments.
